Cell-cell interactions regulate skeleton formation in the sea urchin embryo.

نویسندگان

  • N Armstrong
  • J Hardin
  • D R McClay
چکیده

In the sea urchin embryo, the primary mesenchyme cells (PMCs) make extensive contact with the ectoderm of the blastula wall. This contact is shown to influence production of the larval skeleton by the PMCs. A previous observation showed that treatment of embryos with NiCl2 can alter spicule number and skeletal pattern (Hardin et al. (1992) Development, 116, 671-685). Here, to explore the tissue sensitivity to NiCl2, experiments recombined normal or NiCl2-treated PMCs with either normal or NiCl2-treated PMC-less host embryos. We find that NiCl2 alters skeleton production by influencing the ectoderm of the blastula wall with which the PMCs interact. The ectoderm is responsible for specifying the number of spicules made by the PMCs. In addition, experiments examining skeleton production in vitro and in half- and quarter-sized embryos shows that cell interactions also influence skeleton size. PMCs grown in vitro away from interactions with the rest of the embryo, can produce larger spicules than in vivo. Thus, the epithelium of the blastula wall appears to provide spatial and scalar information that regulates skeleton production by the PMCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues.

The skeleton of the sea urchin embryo is synthesized by the primary mesenchyme cells (PMCs). Previous studies have shown that local interactions between PMCs and the neighboring ectoderm regulate several aspects of skeletal morphogenesis, including PMC distribution in the blastocoel, the size of the skeleton and its branching pattern. In the present study, we have further examined the regulatio...

متن کامل

A calcium-binding, asparagine-linked oligosaccharide is involved in skeleton formation in the sea urchin embryo

We have previously identified a 130-kD cell surface protein that is involved in calcium uptake and skeleton formation by gastrula stage embryos of the sea urchin Strongylocentrotus purpuratus (Carson et al., 1985. Cell. 41:639-648). A monoclonal antibody designated mAb 1223 specifically recognizes the 130-kD protein and inhibits Ca+2 uptake and growth of the CaCO3 spicules produced by embryonic...

متن کامل

Pattern formation during gastrulation in the sea urchin embryo.

The sea urchin embryo follows a relatively simple cell behavioral sequence in its gastrulation movements. To form the mesoderm, primary mesenchyme cells ingress from the vegetal plate and then migrate along the basal lamina lining the blastocoel. The presumptive secondary mesenchyme and endoderm then invaginate from the vegetal pole of the embryo. The archenteron elongates and extends across th...

متن کامل

Embryonic, larval and juvenile development of tropical sea urchin, Diadema setosum

Diadema setosum (Leske, 1778), is one of the common echinoids widely distributed in the Indo-West Pacific Ocean, where it occurs from the Red Sea, Persian Gulf and the east coast of Africa to Japan, Australia and Malaysia. To investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of D. setosum in a controlled laboratory condition at the In...

متن کامل

Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo.

The ectoderm of the sea urchin embryo has been a useful system for understanding how regions of a simple epithelium are specified during early development, as well as how pattern formation leads to the correct localization of mesenchyme cells during morphogenesis. This study examines cell-cell signals that regulate precise patterning of ectoderm within the oral region of embryos of the sea urch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 119 3  شماره 

صفحات  -

تاریخ انتشار 1993